Adaptive machine-learning tool for computationally efficient approximations for airborne pathogen transmission where spatial and temporal heterogeneities matter, selecting & learning from hybrid CFD if needed

Quantum Risk Analytics, Inc.

Typical simplified models

- Computation-reducing assumptions, *e.g.*
 - Well-mixed room
 - Steady state flow
- In many cases suffice
- But there are other of cases in which accuracy is poor:
 - Inadequate mixing; hotspots
 - Rapid changes; transients

Fully-Dynamic Computational Fluid Dynamics (CFD) Model

- Most accurate (with a sufficiently fine or adaptive mesh)
- But may be prohibitively expensive (depending on the scenario and context)

Hybrid (Dynamic/Steady-State) CFD Model

- Divides into different Domains and splices the respective models together.
 - Fully-Dynamic model only where needed
 - Steady-State model everywhere else
- Similar accuracy to pure fully-dynamic CFD
- Much less computationally expensive, however
- But cost still may be prohibitive for many scenarios and contexts

Corrections upon simpler models

- For example, the **Bazant** *et al* (2021) well-mixed room model¹ has two enhancements:
 - Transient
 - Respiratory jet
- In many cases, these simple enhancements may be sufficiently accurate
- But in others, more sophisticated enhancements or models (*e.g.*, hybrid CFD) may be needed....

Machine Learning Corrections to simpler models

- We propose using Machine Learning (ML) to produce correction factors that
 - Apply to larger variety and more complex cases
 - Are more accurate than can be obtained by simple corrections (where applicable)
 - Estimate the associated uncertainty in the correction accuracy
 - Determine *which* model should be run if the uncertainty is too high

ML-trained Agent Based Models (ABM)

- ML can also be used in constructing the probabilistic scenarios via
 - Training agents on the movements and interactions of actual humans in a space
 - Deploying the agents to extrapolate a fuller range of scenarios than those recorded
 - Deriving the effective Probability Density Function for potential human movements

Model Validation

- The ML-CFD model will be validated against:
 - A reference fully-dynamic CFD model
 - Experimental results: concentration measurements, and/or
 - A real-world scenario by successfully modeling the outcomes